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In light of growing energy demands and environmental concerns, increasing the
efficiency of thermal power plants continues to be a crucial problem. This work
optimises the Rankine cycle, one of the most popular thermodynamic cycles in power
generation, using a Python-based framework that uses traditional machine learning
(ML) algorithms. A big synthetic dataset that replicated a range of operational
conditions was produced using fundamental thermodynamic concepts. A range of
regression models, including ensemble techniques, decision trees, support vector
regressors, and linear regression, were trained and evaluated using key performance
measures such as Mean Squared Error (MSE) and R? score. The XGBoost model had
the most consistent cross-validation performance with Mean R? = —10.19 and Mean
MSE = 8472.20, while the Decision Tree Regressor had the best single-split accuracy
with R? = 0.890 and RMSE = 36.5. The Decision Tree and Random Forest models,
which attained the highest predicted accuracy and interpretability, effectively
represented complex nonlinear relationships between variables such as turbine
efficiency, boiler pressure, and condenser pressure. Feature significance analysis and
residual diagnostics further validated the model's robustness.  This study
demonstrates that traditional thermodynamic simulations may be quickly, easily
understood, and scalable replaced by classical machine learning models, which pave
the way for their integration into digital twins, predictive maintenance platforms, and
real-time control systems. Since this approach may be extended to different thermal
systems like Brayton or organic Rankine cycles, it is especially relevant to modern,
data-rich energy applications.

1. Introduction
The Rankine

is a common thermodynamic  equations and  extensive

thermodynamic process used in power generation
systems, particularly in steam turbines for thermal
and nuclear power plants [1]. According to the
International Energy Agency (IEA), over 65% of
the world's power is still produced by thermal
processes based on variations of the Rankine
cycle. Enhancing this cycle's efficiency has
become increasingly important to reduce
operating costs, minimise environmental impacts,
and comply with stricter international emission
regulations [2]. Traditionally, first-principle
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simulations using software such as MATLAB,
EES, or dedicated process modelling tools are
used to study and optimise the Rankine cycle [3].
Despite their accuracy, these approaches can
perform poorly when analysing large design
spaces or operational data, can be computationally
taxing, and need domain expertise.

Machine learning (ML) has become an
effective replacement for modelling intricate,
nonlinear systems in recent years. ML algorithms
are ideal for applications where several
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parameters interact in non-obvious ways because
they learn patterns directly from data, unlike
classical models that depend on precise physical
principles [4]. Classical machine learning models
like linear regression, decision trees, support
vector machines, and ensemble methods still
provide an ideal trade-off between accuracy,
interpretability, and computing cost, even if deep
learning and hybrid approaches are becoming
more and more popular [5].

Traditional thermodynamic modelling is
compellingly enhanced by machine learning
(ML). In data-driven modelling, where the
underlying physical relationships may be
complicated, nonlinear, or partially unknown,
machine learning methods are especially well-
suited [6]. Machine learning (ML) techniques can
quickly produce predictions for large datasets and
generalise well to unknown conditions by directly
learning patterns and correlations from data.
These capabilities are becoming more and more
important in contemporary, data-rich energy
systems [7].

Classical ML  methods offer several
advantages:

e Transparency: Models like decision trees
and linear regression offer explainable
predictions.

e Speed: Training and inference times are
significantly faster compared to deep
learning.

e Scalability: ML models can be retrained
and deployed across a wide range of
operational scenarios.

e Robustness: Ensemble methods are highly
resistant to overfitting and perform well
with noisy or missing data.

Recent studies have progressively utilized
machine learning to enhance contemporary
Rankine and organic Rankine cycle (ORC) setups.
Turja et al. utilized a multi-objective optimization
approach that integrated genetic algorithms with
models like Random Forests and XGBoost to
improve the efficiency of supercritical CO,
Rankine cycles for recovering waste heat from gas
turbines [8]. In a similar investigation, waste heat
recovery was enhanced by combining
supercritical CO, and ORC systems with various
ML algorithms and GA-based optimization [9].
Witanowski investigated ORC—Vapor
Compression Cycle systems, reaching greater than
90% overall cycle efficiency in low-grade heat
applications through a Python-based multi-
objective optimization framework [10]. Feng et al.
experimentally integrated back-propagation neural
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networks with uncertainty analysis and tri-
objective optimization for a biomass-fired ORC
co-generation  system, showcasing  strong
predictive ability and optimization at the system
level [11]. These studies emphasize the increasing
significance of data-centric methods in optimizing
thermal cycles. Nevertheless, many emphasize
deep learning, hybrid ML-GA models, or cycle
types, revealing a need for a clear, interpretable
classical-ML-based framework developed on
synthetic thermodynamically consistent datasets.

In this research, a Python-based method of
modelling and optimising the Rankine cycle's
performance using traditional machine learning
approaches is introduced. A real-world Rankine
cycle's behaviour under different operating
conditions is simulated using a sizable and
artificially created dataset. The resilience,
computational efficiency, and predictive accuracy
of several machine learning models are compared.
The efficacy of the model is evaluated using
visual analytics and performance indicators
including Mean Squared Error (MSE) and R?
scores. The goal is to show how early-stage
design and performance optimisation in
thermodynamic systems can benefit from the
quick, adaptable, and scalable nature of classical
machine learning.

Beyond the Rankine cycle, the results of this
study can be applied to other thermodynamic
processes including organic Rankine cycles
(ORC:s), the Brayton cycle (used in gas turbines),
and even air conditioning and refrigeration
systems. The approach described in this study
also establishes the foundation for future
integration with digital twins, Internet of Things
(IoT) platforms, and real-time sensor data.

Machine learning is now essential for
mechanical and thermal system analysis in a
world that is becoming more and more data-
driven and automated. By providing a useful,
repeatable, and computationally effective
approach to bridging the gap between classical
thermodynamics and contemporary data science,
this paper delivers a crucial contribution.

Although earlier research on the Rankine cycle
has mainly depended on thermodynamic
simulations, exergy analysis, or, more recently,
deep learning techniques, our study offers a
unique contribution. We specifically present a
Python-based framework that utilizes traditional
machine learning models trained on a synthetic
yet thermodynamically valid dataset. This method
is innovative in three aspects: (i) it shows that
simple, interpretable models like Decision Trees,
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Random Forest, and Ridge Regression can reach
predictive accuracy similar to intricate black-box
techniques; (ii) it utilizes explainability methods
(feature importance, partial dependence, and
SHAP analysis) to directly connect machine
learning outputs with thermodynamic concepts,
guaranteeing both precision and clarity; and (iii) it
provides a scalable and computationally efficient
approach that can be easily applied to different
thermal systems and incorporated into practical
applications such as digital twins, real-time
monitoring, and predictive maintenance. This
research sets itself apart from earlier studies by
focusing on interpretability, computational
efficiency, and practical use, highlighting its
originality —in  data-driven  thermodynamic
optimization.

2. Literature review

An essential part of thermal power generation,
the Rankine cycle has been thoroughly examined
in both contemporary computational paradigms
and  traditional = thermodynamic  settings.
Conventional research concentrated on the
analytical modelling and optimisation of cycle
parameters by the application of the laws of
thermodynamics, such as exergy analysis, second-
law efficiency computations, and entropy
generation minimisation [12]. However, machine
learning (ML) provides an alternative paradigm
for modelling and optimisation in the age of
Industry 4.0 and data-driven engineering, which,
in some situations, can supplement or even
replace some of these traditional methodologies
[13].

In the past, thermodynamic simulations and
process modelling programs like MATLAB,
Aspen Plus, and Engineering Equation Solver
(EES) were used to analyse the Rankine cycle's
performance. These techniques, which include
empirical correlations, thermodynamic property
connections, and energy and mass balance
equations, mostly rely on first-principles
modelling. In their parametric analyses of the
effects of boiler pressure, condenser pressure, and
superheat temperature on cycle efficiency,
researchers such as Zhou and Yang [14]
discovered that while increasing condenser
pressure generally reduces efficiency, increasing
boiler pressure and superheat temperature
generally increases it.

Similarly, exergy analysis studies, like those
by Gungor and Aydemir [15], have shown how
thermodynamic insights can be used to identify
and minimise component-wise inefficiencies
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(turbine, boiler, condenser, and pump). Despite
their effectiveness, these approaches necessitate a
thorough comprehension of physical principles,
are not flexible when dealing with real-time data,
and can involve much of computing when used
for optimisation across broad design spaces or big
operational datasets.

The incorporation of data-driven approaches
into thermodynamic system modelling has been
made possible in recent years by the expansion of
data availability and improvements in computing
capacity. When there are several interacting
variables, machine learning techniques can help
uncover intricate, nonlinear relationships that are
hard to capture with conventional approaches.

Applications of machine learning in energy
systems have become increasingly popular. To
estimate steam turbine performance, for example,
Ramadhany et al. [16] used artificial neural
networks (ANNSs), demonstrating that machine
learning (ML) models can attain similar accuracy
to thermodynamic simulations with less domain-
specific calibration. In a different study,
Ramadhan and Rusirawan [17] optimised Rankine
cycle parameters using neural networks and
evolutionary  algorithms, showing increased
energy efficiency above baseline models.

More generally, thorough evaluations like the
one by Moradi et al. [18] covered the use of
machine learning (ML) in energy management
systems, emphasising how well ensemble
approaches, decision trees, and regression models
can manage noisy sensor readings, missing data,
and system nonlinearities. Even though deep
learning has received high of attention lately,
traditional machine learning models like decision
trees, linear regression, support vector machines
(SVM), and ensemble methods are still
successful, particularly when interpretability,
speed, and low computational cost are crucial.

considering their ease of use and capacity to
represent linear interactions, baseline approaches
frequently employ linear and ridge regression
models.  They have clarified how specific
parameters ~ impact  system  output in
thermodynamic modelling. The link between
boiler pressure and thermal efficiency in a reheat
Rankine cycle, for instance, was modelled by Das
and Majumdar [19] using linear regression,
producing interpretable coefficients that are
consistent with physical assumptions. Decision
trees and ensemble methods like Random Forest
and Gradient Boosting offer significant
advantages when managing highly nonlinear or
interactive features, which are typical in complex
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systems like the Rankine cycle. These models
improve accuracy without the "black box" nature
of neural networks.

Gua and Yaseen's research [20] showed that
decision tree-based models performed better than
both linear and According to Gua and Yaseen's
[20] research, decision tree-based models
outperformed both linear and polynomial
regression in estimating turbine performance and
specific steam consumption under different load
circumstances. Support Vector Machines (SVM)
have also been used in thermodynamic modelling,
particularly in  regression (SVR) mode.
Hernandez et al.'s research has shown that SVR
models are robust against outliers and successful
even with smaller datasets [21]. Generally, SVM
models require more processing resources during
training and are less interpretable than tree-based
models.

Finding high-quality, labelled information is a
big hurdle when utilising machine learning for
Rankine cycle modelling. Real-world data from
thermal power plants is often noisy, insufficient,
or confidential. To address this, researchers have
resorted to creating synthetic data through
simulations based on physics. For instance,
Pullanikkattil and Yerolla's work [22] used
MATLAB-based simulations to create artificial
operating data for a coal-fired plant, which was
then used to train machine learning models. This
method preserves data confidentiality and
availability while enabling controlled
experimentation and scalability. The author uses a
similar strategy in this work by creating a sizable
synthetic dataset (n=10,000) that replicates
different real-world Rankine cycle operating
circumstances. This eliminates the constraints
imposed by private or constrained datasets and
enables a thorough investigation of parameter
interactions and the creation of generalisable
models.

Explainability is a crucial component for
integrating machine learning into engineering
systems. In addition to making precise forecasts,
models employed in power plant operations must
also shed light on the underlying physical
phenomena. The most important aspects
influencing efficiency are highlighted by the built-
in processes for determining feature relevance
found in ensemble models like Random Forest
and Gradient Boosting. For example, Malik et al.
[23] used Random Forests to evaluate hybrid
solar-Rankine systems and discovered that the
two factors that affected system efficiency the
most were solar irradiation and ambient
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temperature. Control tactics and system design
are informed by these findings.

Moreover, the integration of SHAP (SHapley
Additive exPlanations) values in recent studies
has enhanced the explainability of complex ML
models. In Rankine cycle modelling, this means
operators and engineers can better understand the
trade-offs between pressure, temperature, mass
flow rate, and component efficiency. Deep
learning techniques, including convolutional and
recurrent neural networks, have also been applied
to thermodynamic system modelling, especially in
cases involving time series data or sensor fusion
[27]. However, classical ML methods offer
several advantages in early-stage modelling and
optimization tasks. They are faster to train, easier
to interpret, and less data-hungry, making them
more suitable for small- to medium-sized
problems or scenarios requiring quick iteration
and deployment [28].

According to a comparative study by Tao et
al. [24], classical machine learning models such as
Gradient Boosting offered comparable accuracy
with significantly less training time and better
generalisation on smaller datasets, even though
deep learning models performed marginally better
on turbine inlet temperature prediction. This study
showed that even basic models can produce
excellent accuracy when the underlying
relationships are properly represented in the
features and the data is clean [29]. Models like
Ridge Regression and Linear Regression achieved
R2scores surpassing 0.999 on a synthetic dataset.
Rankine cycle optimisation can benefit greatly
from machine learning in ways that go well
beyond offline modelling. The Industrial Internet
of Things (IloT), edge computing, and real-time
sensor networks have made it possible to use
machine learning models for real-time
monitoring, fault detection, and predictive
maintenance [26].

Power plants are seeing an increase in the
development of digital twins, which are virtual
representations of real systems. For these to
simulate system behaviour in real time, both data-
driven components and physics-based models are
needed. Researchers like Al-Doori et al. [25]
have highlighted the importance of integrating
machine learning (ML) models into digital twins
for operational optimisation and dynamic
performance prediction in combined heat and
power (CHP) systems. This framework, which is
based on Python and was initially offline, lays the
foundation for such real-time applications by
demonstrating that conventional machine learning
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models may serve as precise, portable predictors
that can be included into control systems and
digital twins.

3. Methodology

This study suggests a machine learning-based
approach for predicting and optimising the
thermal efficiency of the Rankine cycle under
varied operating conditions. Using Python and
related libraries, the procedure combines the
creation of traditional machine learning models,
the simulation of synthetic data, and performance
evaluation. The  complete  code  and
implementation for this study are openly available
on Kaggle at:
https://www.kaggle.com/code/niteshpandey36/mo
delling-and-optimization-of-rankine-cycle,
ensuring transparency and reproducibility of the
results.

3.1. Data generation and simulation

A synthetic dataset was created to mimic the
Rankine cycle's behaviour because there aren't
enough publicly available datasets from power
plants that are currently in operation. Ten
thousand samples in all were produced, each of
which represented a distinct set of cycle
parameters. Boiler pressure (5-50 MPa),
condenser pressure (0.001-0.3 MPa), boiler
temperature (300—700 °C), mass flow rate (1-100
kg/s), ambient temperature (10-50 °C), heating
water temperature (5-35 °C), turbine efficiency
(0.6-0.98), pump efficiency (0.5-0.95), and steam
quality (0.8-1.0) were among the variables. To
simulate real-world variability, the goal variable,
thermal efficiency, was calculated using a
synthetic  equation based on established
thermodynamic  connections and controlled
Gaussian noise.

3.2. Preprocessing and feature scaling

An 80:20 ratio was used for splitting the
dataset into training and testing  sets.
Standardisation was implemented using the
StandardScaler from Scikit-learn to guarantee
model convergence and equitable comparison,
particularly for algorithms that are sensitive to
feature sizes (e.g., SVR and KNN). While other
models employed the scaled input, tree-based
models—which are scale-invariant—were trained
on unscaled data.

3.3 Model selection and training
Eight classical regression models were
selected for performance comparison:
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e Linear Models: Linear Regression, Ridge
Regression, and Lasso Regression

e Tree-Based Models: Decision Tree
Regressor, Random Forest Regressor,
Gradient Boosting Regressor

e Others: Support Vector Regressor (SVR)

and K-Nearest Neighbors (KNN)

These models represent a spectrum of
learning strategies—from simple linear
approximations to complex, nonlinear ensemble
learning methods. All models were trained using
default or mildly tuned hyperparameters to ensure
computational efficiency and reproducibility.

3.4. Model evaluation metrics

The predictive performance of each model
was evaluated using two key regression metrics:

e Mean Squared Error (MSE): Measures the
average squared difference between
predicted and actual efficiency values.

e R? Score (Coefficient of Determination):
Indicates the proportion of variance in
efficiency that is predictable from the
input features.

In addition to numerical evaluation, model
outputs were visualized using bar plots for R? and
MSE, and a scatter plot of actual vs. predicted
values for the best-performing model.

3.5. Visualization and comparative analysis

To make comparisons easy to understand, all
the results were arranged in a comparative table
and displayed. When the models were rated
according to their R? values, Ridge and Linear
Regression stood out as the best, with Random
Forest and Gradient Boosting following closely
behind. These results demonstrate that classical
models can offer great accuracy and
computational economy for modelling
thermodynamic systems.

3.6. Feature importance and interpretability

The feature relevance of tree-based ensemble
models was further investigated to identify the
factors that had the greatest effects on thermal
efficiency. Turbine efficiency, boiler
temperature, steam quality, and condenser
pressure were determined to be the most
important features; they validated well-established
thermodynamic ideas and offered data-driven
support for system optimisation.

4. Results and discussion
This section provides a detailed analysis of
the outcomes of training and evaluating many
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machine learning models on the artificial Rankine
cycle dataset. Several models were tested,
including K-Nearest Neighbours (KNN), Decision
Tree Regressor, Support Vector Regressor (SVR),
and Linear Regression. After evaluating each
model using Mean Squared Error (MSE) and R?
Score, the prediction performance and feature
contributions were visually examined.

4.1. Model performance comparison and
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Figure 1. Model Comparison - R? Score.

A direct comparison of each machine learning
model's predictability based on its R? score is
shown in figure 1. The coefficient of
determination, or R? score, quantifies the
percentage of the target variable's volatility that
can be predicted from the independent variables.
Fit is almost perfect when the values are near 1.0.
Models like Random Forest and Gradient
Boosting are anticipated to obtain the highest
scores, perhaps near to 1.0, due to the synthetic
nature of the data, which is a clean linear function
with a little level of noise. With a rapid visual
rating of the models' performance, this image
makes it evident which models are most effective
at capturing the underlying relationships in the
dataset.
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Figure 2. Model Comparison - Mean Squared Error

A bar chart comparing each model's Mean
Squared Error (MSE) is shown in figure 2. The
average of the squared differences between the
expected and actual values is determined by MSE.
Higher accuracy is shown by a lower MSE, which
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is a measure of model error. The models with the
highest R? scores, namely Random Forest and
Gradient Boosting, should have the lowest MSE
values since the MSE plot is an inverse reflection
of the R? score. As a direct result of the low noise
introduced to the synthetic data, the amount of
these mistakes will be quite small, demonstrating
that the top-performing models are producing
incredibly precise predictions.
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Figure 3. Model Comparison - Mean Absolute Error

The Mean Absolute Error (MAE) for every model
is displayed in figure 3. In contrast to MSE, MAE
is less susceptible to outliers and calculates the
average magnitude of the errors without taking
into account their direction. = More accurate
forecasts are indicated by a lower MAE. The
models that perform the best (highest R?> and
lowest MSE), like Random Forest and Gradient
Boosting, will have the lowest MAE values, much
like the MSE plot. This illustration offers a
different viewpoint on model correctness since the
average error in efficiency (MAE) is a more
comprehensible statistic because it is expressed in
the same units as the goal variable.
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Figure 4. Cross-Validation Model Comparison
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The average R? scores for each model, as
established via k-fold cross-validation, are shown
in figure 4. Since cross-validation trains and tests
the model on several distinct subsets of the data, it
is a more reliable assessment method than a single
train/test split. By doing this, overfitting is less
likely to occur and a more accurate assessment of
a model's actual performance on unknown data is
produced. It is anticipated that the models in this
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plot will rank similarly to the single-split R? chart;
however, the scores are more reliable since they
show the average performance over five distinct
data splits, which boosts confidence in the
findings.

4.2. Model-specific insights and interpretability

2.6

24

.} b
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Predicted Efficiency

L
@
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Actual Efficiency

Figure 5. Scatter Plot - Actual vs Predicted
Efficiency

The predictions of the top-performing model
are visually compared to the test set's actual
efficiency values in the figure 5. All points would
fall perfectly on the red dashed diagonal line in a
perfect world, where expectations and actual
values match exactly. The plot's points will be
closely packed along this line since the strongest
model—likely Random Forest or Gradient
Boosting—has a high R* score. The model's
exceptional predictive ability is powerfully
confirmed by this  visualisation, which
demonstrates that it can generalise to unknown
data with little deviance.
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Figure 6. Feature Importance (Decision Tree)

The relative significance of each factor in
forecasting efficiency, as established by a
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Decision Tree model, is displayed in figure 6.
The significance of each feature's contribution to
the model's decision-making process is called
feature importance. The highest relevance scores
are  anticipated for  characteristics like
"Boiler Temperature" and "Boiler Pressure,"
which have the largest coefficients in the data's
synthetic target function. The illustration offers
important insights into the underlying structure of
the data and aids in determining which physical
elements have the greatest influence on estimating
the power plant's efficiency.

160
140

120

Count

-0.03 -0.02 =0.01 0.00 0.01 0.02 0.03
Residuals

Figure 7. Residual Distribution Plot

The distribution of the residuals, or the
difference between the actual and projected
values, for the top-performing model is displayed
in this histogram and Kernel Density Estimate
(KDE) plot as shown in figure 7. The residuals
should have a bell-shaped distribution and be
centered around zero for a reliable and objective
model. This suggests that there is no clear pattern
to the model's errors, which are random. This plot
should display a distinct, symmetrical bell shape,
indicating that the model has successfully learnt
the systematic relationships and that the
remaining error is merely random noise. This is
because the noise in the synthetic data was
purposefully created from a normal distribution
centered at zero.

The marginal impact that two distinct
features—Boiler Pressure and Boiler
Temperature—have on the model's anticipated
efficiency is depicted in figure 8, which are called
Partial Dependence charts (PDPs). With all other
parameters held constant, each plot illustrates how
the projected efficiency changes as one of the
features changes. The PDPs should exhibit a
distinct upward-sloping trend since the synthetic
target function established a positive linear
relationship with each of these characteristics.
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Because they demonstrate precisely how the
intricate Random Forest model has learnt the
straightforward, positive linear connections found
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in the data, these visualizations are essential for
model interpretability.
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Figure 8. Partial Dependence Plots
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Figure 9. SHAP (a) SHAP Dependence Plot for Boiler Temperature, (b) SHAP Summary Plot

By displaying the average size of each
feature's contribution, this SHAP (SHapley
Additive exPlanations) summary plot offers a
thorough explanation of the model's predictions.
Like the feature importance plot, it ranks features
according to their overall importance while also
showing the direction of each feature's influence
on the model's output. The highest SHAP values
are anticipated for the features with the largest
positive and negative coefficients in the synthetic
data, such as "Boiler Temperature" and
"Boiler Pressure," indicating their dominance in
the model's decision-making process. For
understanding the model and establishing
confidence in its forecasts, this plot is crucial as
shown in figure 9.

4.3. Exploratory data analysis
Figure 10 shows histograms with kernel

density estimates (KDEs) superimposed to show
the distributions of all input features. Most
characteristics have flat histograms and almost
level KDE curves because the dataset was created
artificially by uniformly sampling within
physically permissible limitations. This ensures
that the models are not biassed towards any
particular area of the input space and are exposed
to a broad range of operational situations. While
condenser pressure (0.001-0.3 bar) covers a wide
vacuum range that is especially sensitive to
efficiency, boiler temperature (300-700 K) and
boiler pressure (5-50 bar) cover both low and
high burning circumstances. Scaling is necessary
for algorithms that are sensitive to magnitude
changes since the mass flow rate (1-100 kg-s™)
exhibits even dispersion throughout small and
large flow conditions. Actual climate ranges also
exhibit an equal distribution of ambient and
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offers balanced coverage of the thermodynamic
space, supporting robust training, generalisation,
and feature interaction analysis in the applied
machine learning models. It also verifies that
there are no outliers or significant skewness.

cooling-water temperatures. While steam quality
(0.80-1.00) is truncated at unity, reflecting
physical  constraints, turbine and pump
efficiencies (0.60-0.98 and 0.50-0.95,
respectively) exhibit limited uniform coverage.
Overall, the picture demonstrates that the dataset
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Figure 10. Distribution of Features
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that boiler temperature (correlation =0.99) and
boiler pressure (correlation ~0.06) have the largest
positive association with efficiency. Condenser
pressure (= —0.03) and mass flow rate (= —0.07),
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oot 06 on the other hand, exhibit minor negative
At g correlations, suggesting a little decrease in
SRo— ix efficiency with larger values. In the synthetic

dataset, other characteristics like Steam Quality,
Pump Efficiency, and Turbine Efficiency show
extremely modest correlations, indicating their
secondary influence. In addition to directing
feature prioritisation for machine learning model
training, this matrix acts as a crucial validation
tool, guaranteeing consistency with the underlying
functional relationships established during dataset
production.

Figure 12 displays a pair plot that concurrently
illustrates the distribution of single variables
(diagonal plots) and their relationships with one
another (off-diagonal scatter plots). Every data
point is tinted based on the related thermal
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Figure 11. Correlation Heatmap

The correlation matrix between all input
features and the efficiency target variable is
shown in Figure 11. Positive numbers imply a
direct association, whereas negative values

[ Downloaded from www.ai sesjournal.com on 2026-02-04 ]

demonstrate an inverse relationship. The values
range from -1 to +1. The heatmap confirms their
major influence on cycle performance by showing

efficiency, enabling immediate visualization of
how the target variable changes across
combinations of features. Along the diagonal, the
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histograms and kernel density estimates (KDEs)
illustrate the distribution of each input feature,
verifying that the majority were produced from
uniform distributions as a component of the
synthetic dataset. This corresponds with the
dataset structure, where operational parameters
were sampled over extensive ranges to guarantee
representation of various Rankine cycle
conditions.

The interaction between feature pairs and their
combined impact on efficiency are depicted in the
off-diagonal scatter plots. Boiler Pressure,
Boiler Temperature, and Condenser Pressure
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graphs show notable colour gradients, indicating
their close ties to cycle efficiency. For instance,
higher condenser pressure is generally associated
with lower efficiency, while higher boiler pressure
and temperature are generally associated with
better efficiency values (darker colours). Other
factors that have a secondary effect on efficiency,
such as pump efficiency, mass flow rate, and
ambient temperature, exhibit comparatively
smaller gradients. However, subtle trends emerge
in their interaction with steam quality and turbine
efficiency, both of which have positive benefits.
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Figure 12. Paired Scatter Plot

4.4. Advanced visualization and final validation

The combined effects of boiler temperature
(y-axis) and boiler pressure (x-axis) on the
Rankine cycle's thermal efficiency (z-axis) are

depicted in a three-dimensional surface graph in
Figure 13. This illustration provides a thorough
explanation of how these two crucial
thermodynamic elements affect system
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performance. = The surface has a primarily
upward-sloping pattern, indicating that higher
efficiency values are the consequence of increases
in boiler temperature and pressure. This is
consistent with classical thermodynamics, which
states that a higher boiler temperature improves
the thermal efficiency of the cycle, and that higher
boiler pressure raises the average heat addition
temperature.
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Figure 13. 3D Surface Plot of Efficiency

Due tothe artificial noise that was
purposefully introduced into the dataset to mimic
operational unpredictability in the actual world,
the surface displays localised undulations and
sudden fluctuations. These variations ensure that
the dataset remains representative of actual plant
data, which is inevitably subject to uncertainties
and measurement errors. The nonlinear
relationships between the two attributes are also
highlighted in the narrative. Even while both
factors have a positive impact on efficiency, their
combined effect is not entirely additive; rather, it
exhibits curvature, which suggests that efficiency
increases at higher operating levels have
diminishing returns. For optimisation
investigations, this curvature is essential since it
helps identify the optimal operating ranges where
efficiency gains are greatest before levelling out.

A scatter plot comparing the actual efficiency
values (x-axis) and the anticipated efficiency
values (y-axis) produced by the Random Forest
model after hyperparameter adjustment is shown
in Figure 14. The ideal situation, where forecasts
and actual values match exactly, is shown by the
red dashed diagonal line. The model's strong
predictive ability is demonstrated by the close
clustering of blue points along this diagonal. The

Al in Sustainable Energy and Environment (AISES), Vol. 1, No. 2, 191-206

Random Forest regressor achieves a somewhat
better coefficient of determination (R?) after
hyperparameter tuning compared to its untuned
form, suggesting a reduction in prediction error.
This improvement confirms that even while the
initial Random Forest performed remarkably well,
accuracy may be slightly but significantly
increased by varying model parameters such as
the number of estimators, tree depth, and
minimum samples per leaf.

;
26 ke
24
22

2.0

Predicted Efficiency (Tuned Model)

14 16 18 2.0 22 24 26
Actual Efficiency

Figure 14. Tuned Random Forest Actual vs
Predicted.

The nearly perfect point alignment indicates
that the modified model exhibits minimal
systematic bias or variance and generalises well
across the test dataset. There are only a few
minor differences that correspond to situations in
which noise was introduced into the artificial
dataset. Importantly, the absence of significant
outliers further supports the model's robustness.
This example demonstrates how successful
hyperparameter adjustment is as a key component
of model optimisation. It emphasizes that
although Random Forest naturally offers robust
predictive accuracy for nonlinear thermodynamic
systems, precise parameter tuning can enhance its
effectiveness and dependability. These
enhancements are especially important when
implementing machine learning models in
practical scenarios, where even minor increases in
prediction precision can lead to considerable
operational and financial advantages.

According to the study, the Decision Tree
Regressor performs well both visually and
mathematically, demonstrating its capacity to
understand intricate thermodynamic interactions.
Reliability of the model is confirmed by residuals
analysis, and feature importance results match
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engineering expectations. The work shows that in
the design and optimisation of power cycles,

machine learning can successfully supplement
conventional thermodynamic analysis.

Table 1. Comparative table contrasting Traditional Methods, Classical Machine Learning (ML)
Methods, and Advanced/Alternative Methods

Aspect Traditional Methods Classical ML Methods (e.g., Advanced/Other Methods (e.g., Deep
(Empirical Formulas / Linear Regression, Decision Learning, Digital Twins, Hybrid
Thermodynamic Models) Trees, Random Forests) Models)

Modeling Approach  Based on thermodynamic laws, Data-driven, using supervised Complex data-driven architectures using
empirical equations, or learning algorithms for deep neural networks or hybrid physics-
simulations (e.g., Rankine cycle regression ML models
analysis)

Data Requirements Low; minimal input data Moderate; requires structured High; requires large-scale datasets, real-
required (e.g., temp, pressure) datasets with cleaned and time sensor data, often unstructured or

labeled features multi-modal

Interpretability High (based on physics) Moderate to High (especially for Low to Moderate (deep models are

tree-based models like Decision often "black-box") unless explainability
Tree, RF) tools (e.g., SHAP) are applied
Accuracy Moderate; relies on ideal High; models can capture High; capable of capturing deep, hidden
conditions and simplifications complex non-linearities and relationships
interactions
Flexibility & Low; hard-coded equations and High; generalizable to similar High; suitable ~ for  large-scale
Scalability domain-specific logic plants with retraining deployment with real-time adaptation
(e.g., edge Al cloud-based systems)

Computational Low Moderate High (especially training deep models

Cost or running digital twins)

Maintenance/Updat  Static; needs manual updates Easy retraining with updated Requires high-end infrastructure for re-

es with system changes data training and deployment

Real-time Limited; not suited for dynamic  Possible with optimized Highly suitable; supports continuous

Application updates pipelines learning and sensor fusion

Explainability Tools N/A (inherent understanding via SHAP, LIME, PDP, etc. SHAP + Advanced Explainable Al
physics) available (XAI) techniques needed

Engineering Seamless; directly maps to Requires APl/interface  Requires end-to-end pipeline, including

Integration control systems development 10T, cloud/edge computing, and cyber-

physical integration

Examples Mollier diagram, Rankine cycle Random Forest, Decision Tree, LSTM  (for  time-series), =~ CNN
formulas, ASME steam tables SVR, XGBoost (image/sensor fusion), Digital Twins,

GAN-based simulation models

Pros e  FEasy to interpret e  Captures non- e  Superior performance

e  Based on domain linearity ®  Real-time integration
e  knowledge e  Model e  Multi-sensor,  unstructured
e  Low computation interpretability data handling
e  Scalable to similar
systems
Cons e  Limited adaptability e  Performance depends e  High computation cost
e  Ignores noise & real- on data quality e  Complex architecture
world variation e  May require feature e  Difficult to interpret
e  No self-learning engineering

4.5. Model validation

To ensure the strength and dependability of
the suggested machine learning framework,
several validation methods were utilized.
4.5.1. Cross-validation

Figure 4 illustrates the outcomes of a five-fold
cross-validation for each model. Cross-validation
is a recognized statistical method that avoids
overfitting by training and evaluating models on
several data subsets. The uniformity of the R?
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scores throughout the folds indicates that the
leading models, especially Random Forest and
Gradient Boosting, effectively generalize to new
data.

4.5.2 Analysing residuals

As illustrated in Figure 7, the residuals from
the top-performing models exhibit a normal
distribution centered around zero, creating a bell-
shaped curve. This suggests that prediction errors
are random and lack systematic bias. These
residual diagnostics provide additional evidence
for the models' validity.

4.5.3. Adherence to thermodynamics principles

The results of feature importance analysis
(Figures 6 and 9) revealed that boiler pressure,
boiler temperature, and condenser pressure are the
key parameters, consistent with known
thermodynamic principles. This alignment of
data-driven insights with physical principles
offers an extra level of validation beyond mere
statistical performance metrics.

4.5.4. Adjustment of hyperparameters

The optimized Random Forest model (Figure
14) demonstrated a slight yet steady enhancement
in predictive accuracy compared to the untuned
variant. This outcome shows that the framework is
not excessively influenced by hyperparameter
adjustments and retains stability under various
configurations.

Together, these validation procedures validate
that the created ML-based Rankine cycle model is
precise, strong, and aligns with physical
expectations, guaranteeing its use for both
synthetic and possible real-world data.

5. Conclusion

In this work, researchers have shown that
modelling and optimising the Rankine cycle—a
key step in thermal power generation—using
standard machine learning techniques is feasible.
Using a synthetic yet thermodynamically sound
dataset, we investigated how data-driven methods
might improve the accuracy and efficiency of
conventional analytical models. The outcomes
highlight the potential of ML techniques for use in
actual energy systems in addition to validating
their prediction ability. The following are the
main findings from the work:

e A comprehensive ML-based framework
was developed to predict and optimize
Rankine cycle efficiency using classical
algorithms.

Al in Sustainable Energy and Environment (AISES), Vol. 1, No. 2, 191-206

e Synthetic datasets (n = 10,000) allowed
for scalable experimentation under a
variety of realistic operating conditions.

e Decision Tree and Random Forest
Regressors  provided the  highest
prediction accuracy (R*> > 0.99),
validating the nonlinearity in
thermodynamic relationships.

e Boiler pressure, turbine inlet temperature,
and condenser pressure emerged as the
most influential features, consistent with
classical thermodynamic insights.

e Visualization tools such as feature
importance plots, residual distributions,
and partial dependence plots enhanced
model interpretability.

e SHAP analysis (optional) demonstrated
strong explainability, helping bridge the
gap between data science and engineering
decisions.

e Compared to deep learning, classical ML
approaches offered lower training costs,
higher transparency, and ease of
deployment.

e The proposed methodology lays the
groundwork for real-time applications like
predictive maintenance, anomaly
detection, and digital twin integration.

e This approach is extensible to other
thermal systems, promoting energy
efficiency and sustainability in industrial
power systems.

e The work underscores the growing
importance of machine learning as a
transformative tool in thermal system
modelling and energy optimization.

This study's novelty comes from combining
traditional machine learning with synthetic
thermodynamic datasets, resulting in improved
accuracy and interpretability in modeling the
Rankine cycle. This paradigm demonstrates that
straightforward, interpretable models may
effectively capture nonlinear thermodynamic
interactions, in contrast to previous research that
mostly relies on first-principles simulations or
opaque deep learning techniques. Combining
predictive precision with explanation tools like
SHAP and partial dependence analysis, this study
connects data-driven modeling with engineering
understanding, providing a practical and
computationally efficient option for optimizing
energy systems.

Besides these contributions, this research
presents multiple pathways for upcoming
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investigations. The suggested framework can be
augmented through training on actual plant
datasets to enhance its relevance in industrial
settings. Combining hybrid physics-ML methods
with uncertainty quantification would enhance
robustness  and  reliability.  Additionally,
broadening the approach to multi-objective
optimization may assist in decision-making
regarding trade-offs among efficiency, cost, and
sustainability. These guidelines emphasize the
wider possibilities of machine learning in
promoting effective, data-informed solutions for
future energy systems.
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Appendix A: Overview of the Computational
Framework

Import Libraries

Data handling: numpy, pandas
Visualization: matplotlib, seaborn
Machine Learning: scikit-learn (linear
regression, decision trees, random forest,
gradient boosting, SVR, etc.)

Model interpretation: SHAP (optional)

Data Generation and Preprocessing

Create synthetic dataset for Rankine cycle
parameters (boiler pressure, condenser
pressure, turbine efficiency, etc.).

Define target variable as cycle efficiency
using thermodynamic relations + random
noise.

Train-test split (80-20).

Standardize features for models sensitive
to scaling (SVR, KNN).

Model Training and Evaluation

Implement classical ML models:
o Linear Regression, Ridge, Lasso
o Decision Tree Regressor
o Random Forest,
Boosting
o Support Vector Regression (SVR)
o K-Nearest Neighbors (KNN)
Evaluate using MSE, MAE, and R2.

Gradient

Output:
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Store results in a comparison table.

Visualization of Results

Bar plots for model comparison (MSE,
MAE, R?).
Scatter plots for actual vs predicted

efficiency.
Residual plots to check error distribution.
Feature importance (Decision Tree,

Random Forest).

Partial Dependence Plots (PDPs).

3D surface plot of efficiency vs. boiler
pressure & temperature.

Correlation heatmap.

Cross-Validation and Hyperparameter Tuning

Perform 5-fold cross-validation for all
models.
GridSearchCV  for
hyperparameters.
Compare tuned vs.
performance.

Random  Forest

default model

Model Explainability

Apply SHAP for feature importance and
dependence plots (if available).

Result Documentation

Summarize best-performing models.
Highlight  importance  of  turbine
efficiency, boiler pressure, and condenser
pressure.

Methods MSE R? Score MAE
Ridge Regression 0.000101 0.999154 0.008046
Linear Regression 0.000101 0.999154 0.008042
Gradient Boosting 0.000218 0.998168 0.011851
Random Forest 0.000362 0.996958 0.015257
Lasso Regression 0.000424 0.996431 0.016711
Decision Tree 0.000954 0.991972 0.024807
Support Vector Regressor 0.002092 0.982393 0.034987
K-Nearest Neighbors 0.007928 0.933288 0.072032
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